Flagellar regeneration in Chlamydomonas reinhardtii: evidence that cycloheximide pulses induce a delay in morphogenesis.
نویسنده
چکیده
The behaviour of a pool of flagellar precursors, assayed by the ability of cells to regenerate flagella in the absence of de novo protein synthesis, has been examined during organelle morphogenesis in the biflagellate alga Chlamydomonas. The results demonstrate that flagellar elongation can continue even when this pool is apparently empty and suggest that 2 sources of precursors are available to the regenerating flagella: those pre-existing in the cellular pool and those synthesized de novo. Further evidence for this was obtained by subjecting regenerating cells to pulses of cycloheximide. Cells exposed to this drug during the first 60 min post deflagellation formed only half-length (5-mum) flagella, whereas a pulse administered after this point allowed the formation of longer flagella and suggested that some de novo protein synthesis was required for the formation of full-length flagella, although it was not a prerequisite for the initiation of regeneration. In addition, it was found that, subsequent to the removal of the cycloheximide, flagellar regeneration did not recommence immediately, but was delayed for a period of approximately 45 min, irrespective of length of flagella formed prior to drug inhibition. The nature of this cycloheximide-induced delay is unclear and certain alternatives, based on the exhaustion of structural/regulatory components are considered. Although it is not possible to distinguish between these alternatives, tubulin is not the limiting component, since a pool of this protein is present when flagellar elongation is prevented by cycloheximide.
منابع مشابه
Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii
When Chlamydomonas cells are deflagellated by pH shock or mechanical shear the nucleus rapidly moves toward the flagellar basal apparatus at the anterior end of the cell. During flagellar regeneration the nucleus returns to a more central position within the cell. The nucleus is connected to the flagellar apparatus by a system of fibers, the flagellar roots (rhizoplasts), which undergo a dramat...
متن کاملOn the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii
This study was undertaken to prove that voltage-sensitive calcium channels controlling the photophobic stop response of the unicellular green alga Chlamydomonas reinhardtii are exclusively found in the flagellar region of the cell and to answer the question as to their exact localization within the flagellar membrane. The strategy used was to amputate flagella to a variable degree without pertu...
متن کاملPhosphorylation of nuclear and flagellar basal apparatus proteins during flagellar regeneration in Chlamydomonas reinhardtii
The antiphosphoprotein monoclonal antibody MPM-2 was used to investigate protein phosphorylation during flagellar regeneration in Chlamydomonas reinhardtii. MPM-2 recognizes a phosphorylated epitope and detects several Chlamydomonas proteins by Western immunoblot analysis. Two MPM-2 reactive proteins (34 and 90 kD) increase in Western immunoblot intensity after flagellar excision and decrease i...
متن کاملGenome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes.
The important role that cilia and flagella play in human disease creates an urgent need to identify genes involved in ciliary assembly and function. The strong and specific induction of flagellar-coding genes during flagellar regeneration in Chlamydomonas reinhardtii suggests that transcriptional profiling of such cells would reveal new flagella-related genes. We have conducted a genome-wide an...
متن کاملFlagellar elongation and gene expression in Chlamydomonas reinhardtii.
Lithium (Li(+)) affects the physiology of cells from a broad range of organisms including plants and both vertebrate and invertebrate animals. Although its effects result presumably from changes in gene expression elicited by its interaction with intracellular signal transduction pathways, the molecular mechanisms of Li(+) action are not well understood. The biflagellate green alga Chlamydomona...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 20 3 شماره
صفحات -
تاریخ انتشار 1976